

NASA community input on gamma-ray astrophysics

Manel Errando
Washington University in Saint Louis

Gamma Ray SIG (GR-SIG)

- Goal is to coordinate community activities and preparations for future gamma-ray missions.
- Activities:
 - Organize sessions at AAS / APS / HEAD / SPIE meetings.
 - Organize monthly webinars to highlight gamma-ray science results and stimulate community discussion.
 - Launch SAGs (Science Analysis Groups) which are timeconstrained taskforces with the goal of providing findings that can influence NASA policy.

Chairs: Justin Finke (NRL), Jeremy Perkins (GSFC), Manel Errando (Washington Univ. St Louis)

Recent GRSIG webinars

- Lessons learned from the Advanced Compton Telescope (Steve Boggs, UCSD)
- Design and implementation of future gamma-ray missions: a co-design approach (Chris Fryer, LANL)
- Science capabilities of future gamma-ray missions (Jeremy Perkins, GSFC)
- Roadmap to Complementarity: Key Investments in the High-Energy Space Infrastructure Environment for 2040 (Tiffany Lewis, GSFC)
- Lessons learned from the 1997 Roadmap for Gamma-ray Astronomy (Peter Michelson, Stanford)
- Searches for indirect dark matter detection in the gamma-ray band (Joshua Foster, MIT)
- Gamma-ray observatories as pulsar timing arrays (Matthew Kerr, NRL)

Slides and recordings are available at https://pcos.gsfc.nasa.gov/sigs/grsig.php

FIG SAG

Future Innovations in Gamma rays Science Analysis Group

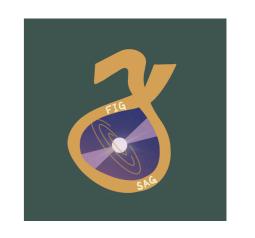
Michelle Hui

Astrophysical gamma rays span ten orders of magnitude in energy and capture key physics from a broad range of astrophysical phenomena. This task-force will explore gamma-ray science priorities, necessary capabilities, new technologies, and theory/modeling needs drawing on the 2020 Decadal to inspire work toward 2040.

Marcos Santander

Paolo Coppi

Tiffany Lewis


Zorawar Wadiasingh

Milena Crnogorčević

FIG SAG Timeline

Future Innovations in Gamma rays

Kickoff session: Tuesday @ 10-11:30AM in Room 219

Manel Errando Introduction to GRSIG and FIGSAG

Michelle Hui FIGSAG: overview and goals

Regina Caputo Previous reports on gamma-ray astronomy

Enrico Bozzo International context for gamma-ray astronomy

Tiffany Lewis Recent gamma-ray planning exercises

Chris Fryer Community discussion and request for inout

Technology gaps

- NASA regularly updates its list of Technology gaps.
- The list informs funding for technology development (SAT, APRA, etc)
- Sollicitation for input is out, due date is June 3rd.

Tier 1 Technology Gaps

Advanced Cryocoolers Coronagraph Contrast and Efficiency Coronagraph Stability Cryogenic Readouts for Large-Format Far-IR Detectors Heterodyne Far-IR Detector Systems High-Performance, Sub-Kelvin Coolers

High-Reflectivity Broadband Far-UV-to-Near-IR Mirror Coatings High-Resolution, Large-Area, Lightweight X-ray Optics High-Throughput Bandpass Selection for UV/VIS

High-Throughput, Large-Format Object Selection Technologies for Multi-Object and Integral Field Spectroscopy

Large Cryogenic Optics for the Mid IR to Far IR Large-Format, High-Resolution Focal Plane Arrays Large-Format, Low-Darkrate, High-Efficiency, Photon-Counting, Solar-blind, Far- and Near-UV Detectors Large-Format, Low-Noise and Ultralow-Noise Far-IR Direct Detectors Long-Wavelength-Blocking Filters for X-ray Micro-Calorimeters Low-Stress, High-Stability, X-ray Reflective Coatings

Mirror Technologies for High Angular Resolution (UV/Vis/Near IR) Stellar Reflex Motion Sensitivity – Astrometry Stellar Reflex Motion Sensitivity – Extreme Precision Radial Velocity

Vis/Near-IR Detection Sensitivity

Tier 2 Technology Gaps

Broadband X-ray Detectors

Compact, Integrated Spectrometers for 100 to 1000 µm Far-IR Imaging Interferometer for High-Resolution Spectroscopy Far-IR Spatio-Spectral Interferometry

Fast, Low-Noise, Megapixel X-ray Imaging Arrays with Moderate

High-Resolution, Direct-Detection Spectrometers for Far-IR Wavelengths UV Detection Sensitivity Improving the Calibration of Far-IR Heterodyne Measurements Large-Aperture Deployable Antennas for Far-IR/THz/sub-mm Astronomy for Frequencies over 100 GHz

Large-Format, High-Spectral-Resolution, Small-Pixel X-ray Focal-

Polarization-Preserving Millimeter-Wave Optical Elements Precision Timing for Space-Based Astrophysics Rapid Readout Electronics for X-ray Detectors Starshade Deployment and Shape Stability High-Efficiency X-ray Grating Arrays for High-Resolution Spectroscopy Starshade Starlight Suppression and Model Validation

Tier 3 Technology Gaps

Advancement of X-ray Polarimeter Sensitivity Detection Stability in Mid-IR Far-UV Imaging Bandpass Filters High-Efficiency Far-UV Mirror High-Efficiency, Low-Scatter, High- and Low-Ruling-Density, High-

High-Quantum-Efficiency, Solar-Blind, Broadband Near-UV Detector Photon-Counting, Large-Format UV Detectors Short-Wave UV Coatings

Warm Readout Electronics for Large-Format Far-IR Detectors

Tier 4 Technology Gaps

and Low-Blazed-Angle UV Gratings

Advanced Millimeter-Wave Focal-Plane Arrays for CMB Polarimetry Improving the Photometric and Spectro-Photometric Precision of Time-Domain and Time-Series Measurements

UV/Opt/Near-IR Tunable Narrow-Band Imaging Capability Very-Wide-Field Focusing Instrument for Time-Domain X-ray Astronomy

Tier 5 Technology Gaps

Complex Ultra-Stable Structures for Future Gravitational-Wave Missions Disturbance Reduction for Gravitational-Wave Missions Gravitational Reference Sensor High-Performance Spectral Dispersion Component/Device High-Power, High-Stability Laser for Gravitational-Wave Missions Laser Phase Measurement Chain for a Decihertz Gravitational-Wave Mission Micro-Newton Thrusters for Gravitational Wave-Missions Stable Telescopes for Gravitational Wave-Missions

Summary

Your voice is important! Make it count

Join the GRSIG mailing list Participate in our monthly meetings

Provide input to the FIG SAG to highlight Science / Technology / Theory needs to define future gamma-ray missions

